网站地图

墨客学术服务平台

当前位置: 主页 > 论文发表 >

斯坦福发布AI年度报告 中国AI论文数全球第二

时间:2019-07-30 19:52人气:来源: 网络整理

斯坦福发布AI年度报告 中国AI论文数全球第二


【网易智能讯12月17日消息】近日,斯坦福大学发布了《2018年度全球AI报告》,从学术研究、产业、软件开源、公共利益等方面介绍2018年人工智能(AI)技术的发展,并记录计算机视觉、自然语言理解等领域的技术进展。

据介绍,这份报告致力于追踪、整理、提取和可视化与人工智能相关的数据,并成为政策制定者、研究人员、高管、记者和普通大众全面了解AI的依据,以便对复杂的AI领域形成更直观印象。

报告概述

今年的报告实现了两个目标:首先,刷新了去年的指标。其次,它尽可能在全球背景下解析AI技术的进展。前者对实现这份报告的使命至关重要,即奠定AI对话的基础,这意味着持续推进技术进步。但后者也是必不可少的。没有全球视角,就没有AI故事。

2017年的报告严重偏重于北美地区的活动,这反映出该项目全球伙伴关系数量有限的短板,并非一种固有偏见。今年,我们开始缩小全球差距。我们认识到,要使本报告的覆盖足够全面,还有很长的路要走,且需要进一步的合作和外部参与。不过,我们可以断言AI是全球性的技术。

2017年Scopus数据库的AI论文有83%来自美国以外。其中,28%来自欧洲,是所有地区中比例最高的。全球大学AI和机器学习(ML)课程的招生人数都在增加,尤其是中国清华大学,其2017年AI+ML课程的总招生人数是2010年的16倍。

不仅美国、中国和欧洲取得了进展,2014年,韩国和日本分别是AI专利的第二大和第三大生产国,仅次于美国。此外,南非还主办了第二届深度学习Indaba大会,这是世界上最大的ML教学活动之一,吸引了来自20多个非洲国家的500多人参加。

AI的多样性不仅仅是地理上的。如今,超过50%的AI合作项目都是盈利的,包括来自美国公民自由联盟(ACLU)、牛津大学人类未来研究所以及联合国开发计划署等的项目。与此同时,人们也越来越意识到性别和种族多样性对AI进步的重要性。例如,我们看到AI4ALL和Women in Machine Learning (WiML)等组织的人数都有所增加,这鼓励了弱势群体的参与。

活跃度指标和技术性能指标

这篇文章主要介绍了大会报告的第一部分——数据:活跃度和技术性能

活跃度指标体现了学术界、企业、企业家以及公众对AI活动的参与度。从大学生学习AI的人数,到申请AI工作的女性比例,再到AI初创企业风险投资的增长,这些数据包罗万象。

技术性能指标指AI性能随时间的变化。例如,我们可以测量AI回答问题的质量和计算机在测试中检测对象的速度。《2018年度全球AI报告》为去年的许多指标(如机器人安装和AI会议出席率)增加了额外的国家级粒度。此外,我们还增加了许多新的度量标准和研究领域,如专利、机器人操作系统下载、GLUE度量和COCO排行榜等。

总的来说,我们看到了去年主要成果的延续:几乎所有地方的AI活动都在增加,技术性能也在全面提高。不过,今年还是有些特别有趣的成果特别值得注意。这包括自然语言的显著进步,以及课堂上有限的性别多样性。

活跃度研究

一、2018AI论文发表概况

1.按学科分类

相对于1996年来说,下图显示了2018年度学术论文的年度出版率的增长情况。这张图表比较了所有科研领域、计算机科学(CS)和人工智能(AI)领域的论文增长。从1996年到2017年,每年发表的AI论文增长率都超过了CS领域,这表明AI论文的增长不仅仅是出于人们对计算机科学的兴趣才有所增加的。

斯坦福发布AI年度报告 中国AI论文数全球第二


图1:1996年到2017年间,每年按学科分类发表的AI论文增速情况

2.按地区分类

下图显示了按地区分类每年发表的AI论文数量。欧洲一直是最大的AI论文出产地,2017年Scopus数据库中28%的AI论文源自欧洲。与此同时,尽管2008年左右中国AI论文数量出现波动,但在2007年至2017年间,中国发表的论文数量增长了150%。

斯坦福发布AI年度报告 中国AI论文数全球第二


图2:1996年到2017年间,每年按地区分类发表的AI论文数量

3.细分领域分类

下图按细分领域分类显示了Scopus数据库中的AI论文数量。这些子类别并非互相排斥的。



本类导航

sitemap | sitemap