网站地图

墨客学术服务平台

当前位置: 主页 > 论文发表 >

【NIPS 2017】英伟达、谷歌研究盘点 谷歌45篇论文、28个Workshop抢先看(论文下载)

时间:2019-06-19 23:22人气:来源: 网络整理

  新智元AI World 2017世界人工智能大会开场视频

  中国人工智能资讯智库社交主平台新智元主办的 AI WORLD 2017 世界人工智能大会11月8日在北京国家会议中心举行,大会以“AI 新万象,中国智能+”为主题,上百位AI领袖作了覆盖技术、学术和产业最前沿的报告和讨论,2000多名业内人士参会。新智元创始人兼CEO杨静在会上发布全球首个AI专家互动资讯平台“新智元V享圈”。

  全程回顾新智元AI World 2017世界人工智能大会盛况:

  新华网图文回顾

  

  爱奇艺

  上午:

  下午:

  阿里云云栖社区

  ?spm=5176.8067841.wnnow.14.ZrBcrm

  新智元编译来源:research.googleblog.com、nvidia.com编译:马文

  【新智元导读】新智元近日盘点了NIPS 2017概括和亮点,重点汇总了DeepMind和Facebook在NIPS 2017的参与,包括邀请演讲、接收论文等。本文将介绍谷歌和英伟达在NIPS 2017的表现,包括接收论文、邀请演讲、海报、研讨会、比赛和教程等。

本周,NIPS 2017 在加利福尼亚州长滩市举行,这是一个机器学习和计算神经科学的大会,包含有关最新的机器学习研究的邀请报告、展示和演讲。谷歌有450多名员工参与NIPS 2017,通过技术讲座、海报、研讨会、比赛和教程等方式向更广泛的学术研究社区贡献和学习。

 
  本周,NIPS 2017 在加利福尼亚州长滩市举行,这是一个机器学习和计算神经科学的大会,包含有关最新的机器学习研究的邀请报告、展示和演讲。谷歌有450多名员工参与NIPS 2017,通过技术讲座、海报、研讨会、比赛和教程等方式向更广泛的学术研究社区贡献和学习。

  谷歌处于机器学习研究的前沿,一直积极探索从经典算法到深度学习等领域的几乎所有方面。他们同时关注理论和应用,在语言理解,对话,翻译,视觉处理和预测方面的大部分工作都基于最先进的技术,这些技术突破了可能的界限。

  新智元近日盘点了NIPS 2017概况和亮点,重点汇总了DeepMind和Facebook在NIPS 2017的参与,包括邀请演讲、接收论文等。本文将介绍谷歌和英伟达在NIPS 2017的表现,它们分别是今年NIPS的铂金赞助商和钻石赞助商。

  NVIDIA at NIPS 2017

  Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks

  《基于生成对抗网络的光流半监督学习》

  作者:Wei-Sheng Lai, Jia-Bin Huang, and Ming-Hsuan Yang

  摘要:

  卷积神经网络(CNN)近来被应用于光流估计(optical flow estimation)问题。由于训练CNN需要足够多的地面实况训练数据,而现有的方法采用合成的,不真实的数据集。另一方面,无监督的方法能够利用现实世界的视频进行训练,其中地面真实流场不可用。然而,这些方法依赖亮度恒定性的基本假设和不保持在运动边界附近的空间平滑先验。我们在本文中提出一种用GAN处理光流数据的方法,以半监督学习的方式处理没有标签的视频。我们的主要见解是对抗性损失可以捕捉流动扭曲错误的结构模式,而不需要做出明确的假设。基准数据集的大量实验表明,本研究所提出的半监督算法相对纯粹的监督和半监督学习方案有更好的效果。

  Universal Style Transfer via Feature Transforms

  《通过特征转换的通用风格迁移》

  作者:Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang

  摘要:

  通用风格迁移(style transfer)的目的是将任意视觉风格转移给图像。现有的基于前馈的方法在具有高推理效率的同时,主要受限于无法推广到没见过的风格或影响视觉质量。在本文中,我们提出了一个简单而有效的方法,可以解决这些限制,而无需对任何预定义的风格进行训练。我们的方法的关键要素是一个特征变换对,即刷白和着色(whitening and coloring),它们被嵌入到图像重建网络。刷白和着色的变换反映了内容图像的特征协方差与给定风格图像的直接匹配,与神经风格转移中基于格拉姆矩阵的成本优化想法相似。我们证明了所提出的算法的有效性,与最近的一些方法比较显示,我们的方法生成了高质量的风格图像。我们还通过可视化刷白特征和通过简单特征着色来合成纹理来分析我们的方法。

  Learning Affinity via Spatial Propagation Networks

  《通过空间传播网络学习Affinity》

  作者:Sifei Liu, Shalini De Mello, Jinwei Gu, Guangyu Zhong, Ming-Hsuan Yang, Jan Kautz

  摘要:



本类导航

sitemap | sitemap